Merging Visible Light Photoredox Catalysis with Nickle & Gold Catalysis

Reporter: Fengjin Wu Supervisor: *Prof.* Huang Date: 02. 27. 2017

Outline:

- 1. Introduction
- 2. Merging visible light photoredox and nickle catalysis
 - 2.1. Catalysis of downstream steps
 - 2.2. Catalysis of redox steps
 - 2.3. Photoinduced energy transfer
- 3. Merging visible light photoredox and gold catalysis
- 4. Conclusion
- 5. Acknowledgement

1. Introduction

Common modes of tandem transition metal and photocatalysis:

A. Catalysis downstream steps

B. Catalysis redox steps

C. Photoinduced energy transfer

Outline:

1. Introduction

2. Merging visible light photoredox and nickle catalysis

2.1. Catalysis of downstream steps

2.2. Catalysis of redox steps

2.3. Photoinduced energy transfer

3. Merging visible light photoredox and gold catalysis

4. Conclusion

5. Acknowledgement

Conventional Suzuki-Miyaura cross-coupling:

However, the application of secondary alkylboron reagents in these transformation was limited.

Notable examples of secondary alkyl Suzuki cross-coupling:

Limitation of using secondary alkylboron:

1. Elevated reaction temperature; 2. Using superstoichiometric aqueous base.

Littke, A.F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, 122, 4020–4028. Van den Hoogenband, A.; Visser, M. *Tetrahedron Lett.* **2008**, 49, 4122–4124. Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. *J. Am. Chem. Soc.* **200**8, 130, 9257–9259.

Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis

- Low activation energy
- Reactivity dictated by measurable redox potential
- Requires no base or heat
- SET rate: $C_{SP}^3 > C_{SP}^2 > C_{SP}^2$

Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis

* Reaction performed on 1.0 g (5.5 mmol) ArBr with 1 mol % 4, 1.5 mol % Ni(COD)₂, and 1.5 mol % dtbbpy. TReaction performed with 3 mol % 4, 5 mol % Ni(COD)₂, and 5 mol % dtbbpy. \$55% isolated pure, 18% isolated as mixture with bromide starting material

言の车

Photoredox cross-coupling of secondary (*a*-alkoxy)alkyltrifluoroborate:

Tellis, J. C.; Primer, D. N.; Molander, G. A. Science. 2014, 345, 433-436.

Photoredox cross-coupling of various alkylboron:

Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195–2198.
El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254–258.
Karakaya, I.; Primer, D. N.; Molander, G. A. Org. Lett. 2015, 17, 3294–3297.
Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Chem. Eur. J. 2016, 22, 120–123.

the proposed single-electron transmetalation in photoredox/nickel cross-coupling:

Q: 1. To which oxidation state of Ni does the radical add?

2. Which step is enantiodetermining?

Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195–2198.

Stereoconvergence and mechanistic considerations:

Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896–4899.

Photoredox & nickel-catalyzed decarboxylative and C-H arylation:

Zhiwei Zuo.; Derek T. Ahneman.; Lingling Chu.; Jack A. Terrett.; Abigail G. Doyle.; David W. C. MacMillan. *Science*. **2014**, 345, 437–440. Zhiwei Zuo.; Huan Cong.; Wei Li.; Junwon Choi.; Gregory C. Fu.; David W. C. MacMillan. *J. Am. Chem. Soc.* **2016**, 138, 1832–1835. Megan H. Shaw.; Valerie W. Shurtleff.; Jack A.; Terrett.; James D. Cuthbertson, David W. C. MacMillan. *Science*. **2016**, 352, 1304-1308.

Proposed mechanistic pathway of Photoredox & nickel-catalyzed decarboxylative arylation:

Zhiwei Zuo.; Derek T. Ahneman.; Lingling Chu.; Jack A. Terrett.; Abigail G. Doyle.; David W. C. MacMillan. Science, 2014, 345, 437-440

Outline:

1. Introduction

2. Merging visible light photoredox and Nickle catalysis

2.1. Catalysis of downstream steps

2.2. Catalysis of redox steps

2.3. Photoinduced energy transfer

3. Merging visible light photoredox and gold catalysis

4. Conclusion

5. Acknowledgement

2.2. Catalysis of redox steps

Jack A. Terrett.; James D. Cuthbertson.; Valerie W. Shurtleff.; David W. C. MacMillan. *Nature*, **2015**. 524, 330-334. Mann, G. Hartwig, J. F. *J. Org. Chem.* **1997**, 62, 5413–5418.

2.2. Catalysis of redox steps

Jack A. Terrett.; James D. Cuthbertson.; Valerie W. Shurtleff.; David W. C. MacMillan. Nature, 2015, 524, 330-334.

2.2. Catalysis of redox steps

Jack A. Terrett.; James D. Cuthbertson.; Valerie W. Shurtleff.; David W. C. MacMillan. Nature, 2015, 524, 330-334.

2.2. Catalysis of redox steps

Chi "Chip" Le.; David W. C. MacMillan. J. Am. Chem. Soc. 2015, 137, 11938–11941.

Outline:

1. Introduction

2. Merging visible light photoredox and Nickle catalysis

2.1. Catalysis of downstream steps

2.2. Catalysis of redox steps

2.3. Photoinduced energy transfer

- 3. Merging visible light photoredox and gold catalysis
- 4. Conclusion
- 5. Acknowledgement

2.2. Photoinduced energy transfer

Eric R. Welin.; Chip Le.; Daniela M. Arias-Rotondo.; James K. McCusker.; David W. C. MacMillan. Science. 2017, 355, 380-385.

2.2. Photoinduced energy transfer

Fig. 4. Coupling of carboxylic acids with aryl halides. Substrate scope for the nickel-catalyzed coupling of aryl halides with carboxylic acids via excited-state catalysis. Cbz, benzyl carbamoyl.

Eric R. Welin.; Chip Le.; Daniela M. Arias-Rotondo.; James K. McCusker.; David W. C. MacMillan. Science. 2017, 355, 380-385.

2.2. Photoinduced energy transfer

Reactivity of arylnickel(II) carboxylate is strongly dependent on photocatalyst ET:

Eric R. Welin.; Chip Le.; Daniela M. Arias-Rotondo.; James K. McCusker.; David W. C. MacMillan. Science. 2017, 355, 380-385.

Outline:

- 1. Introduction
- 2. Merging visible light photoredox and Nickle catalysis
 - 2.1. Catalysis of downstream steps
 - 2.2. Catalysis of redox steps
 - 2.3. Photoinduced energy transfer
- 3. Merging visible light photoredox and gold catalysis
- 4. Conclusion
- 5. Acknowledgement

Gold-catalyzed oxidative difunctionalization reactions using external oxidants:

The redox potential of Aul/AulII couple is significantly high ($E_0 = 1.41 \text{ V}$) Disadvantages:

- 1. Strong external oxidants;
- 2. Limitation of substrates;
- 3. Poor selectivity of cross-coupling and homodimers.

Dual gold /photoredox-catalyzed arylation of terminal alkynes

Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89-93.

Alkyne Difunctionalization by Dual Gold/Photoredox Catalysis

Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Chem. Eur. J. 2016, 22, 5909–5913.

Alkyne Difunctionalization by Dual Gold/Photoredox Catalysis

Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Chem. Eur. J. 2016, 22, 5909–5913.

He, Y.; Wu, H.; Toste, F. D. *Chem. Sci.* 2015, 6, 1194–1198.
Kim, S.; Rojas-Martin, J.; Toste, F. D. *Chem. Sci.* 2016, 7, 85–88.
Hopkinson, M. N.; Sahoo, B.; Glorius, F. *Adv. Synth. Catal.* 2014, 356, 2794–2800.
Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. *Chem. Eur. J.* 2016, 22, 5909–5913.

Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Chem. Eur. J. 2016, 22, 5909–5913.

3. Merging visible light photoredox and gold catalysis How to differentiate transmetallation first or oxidation first ?

Figure 1 ³¹P NMR studies in CD₃CN:D₂O

PPh₃AuNTf₂-catalysed reaction (plot D)

neutral PPh₃AuCl undergoes the expected "oxidation first" pathway.

Gauchot, V.; Lee, A.-L. Chem. Commun. 2016, 52, 10163-10166.

Outline:

- 1. Introduction
- 2. Merging visible light photoredox and Nickle catalysis
 - 2.1. Catalysis of downstream steps
 - 2.2. Catalysis of redox steps
 - 2.3. Photoinduced energy transfer
- 3. Merging visible light photoredox and gold catalysis

4. Conclusion

5. Acknowledgement

4. Conclusion

1. Dividing two electron transfer into two single electron transmetalation reduces the high activation barrier.

- 2. Unlock a new paradigm for sp³-sp², sp-sp², sp²-sp² cross-coupling.
- 3. Reacting under mild condition demonstrates greater functional group tolerance.
- 4. The mechanism about oxidation first or transmetallation first remained confused in dual gold/photoredox catalysis
- Outlook
- Can sp-sp³ cross-coupling be realized through this dual gold/photoredox catalysis??

Acknowledgement

Prof. Huang

Wang leifeng

All members in E201

Everyone here

Thank you!

Photocatalyst-free gold-catalyzed difunctional of alkynes

Huang, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 4808–4813.

How to differentiate transmetallation first or oxidation first ?

biphosphine ligand with a small bite angle: preorganize the coordinaiton geometry around the metal center to accommodate rhe aquare planar arrangement.

c) Glorious

Tlahuext-Aca, A.; Hopkinson, M. N.; Daniliuc, C. G.; Glorius, F. Chem. Eur. J. 2016, 22, 11587–11592