

Self-stable Electrophilic Reagents for Trifluoromethylthiolation

Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date: 2017-12-25

Content

➤ Introduction

> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosaccharin: *Preparation and reactivity*

Compararison of the reactivities of Trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2

> Summary

Content

Introduction

> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosaccharin: *Preparation and reactivity*

Compararison of the reactivities of Trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2

> Summary

Introduction of Author

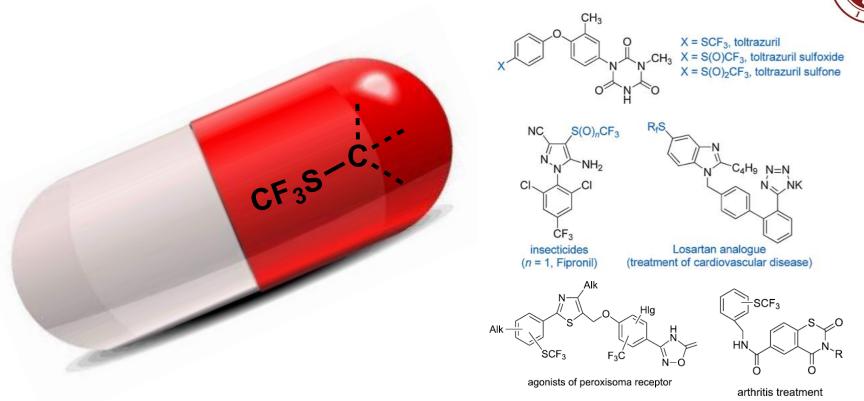
Research Areas

- Organofluorine Chemistry: Electrophilic fluoroalkylation reagents and their reactions
- Organometallics: transition metal-catalyzed reaction, mechanistic study including isolation of the key intermediate, kinetics
- Material Science: living-polymerization of fluorinated monomer

Prof. Qilong Shen Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry

Education

1992-1996, Department of Environmental Science and Engineering, Nanjing University, China, Bachelor 1996-1999, Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Master 2000-2002, Chemistry Department, University of Massachusetts, Dartmouth, Master 2002-2007, Chemistry Department, Yale University, PhD

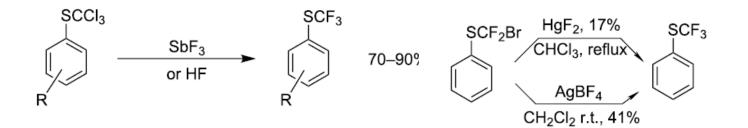

Honors & Distinctions

2010, Hundreds Talens Program of SIOC

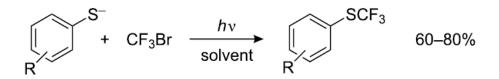
- 2011, Pujiang Program of Shanghai
- 2013, Thieme Chemitry Journal Award
- 2015, Asia Core Program Lectureship Award
- 2016, The National Science Fund for Distinguished Young Scholars

Introduction

- > π = 1.44: high Hansch lipophilicity parameter
- The privileged structural motifs in drug design: improving the drug's pharmacokinetics and efficacy


Boiko, V. N. *J. Org. Chem.* **2010**, *6*, 880–921. Purser, S.; Moore, P. R.; Swallow, S.; *Chem. Soc. Rev.* **2008**, *37*, 320–330. Wang, J.; Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* **2014**, *114*, 2432–2506.

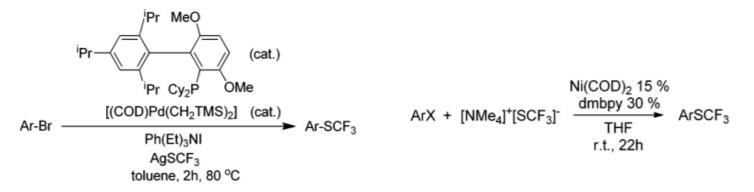
Methods for Trifluoromethylthiolation



- Indirect strategies
- require preformation of the thiolated precursors
- suffer from harsh conditions
- limited substrate scope

Halogen-fluorine exchange of polyhalogenomethyl thioethers

Trifluoromethylation of sulfur-containing compounds


Buchanan, J. B.; Gregory, W. *Chem. Abstr.* **1963**, *58*, 10127. Suda, M.; Hino, C. *Tetrahedron Lett.* **1981**, *22*, 1997–2000.

Direct Trifluoromethylthiolation

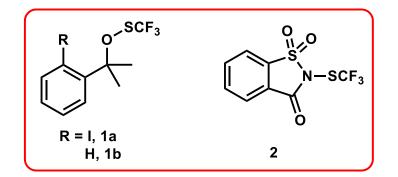
I. Transition-metal catalyzed direct trifluoromethylthiolation

• Pd, Ni-Catalyzed Trifluoromethylthiolation

• Cu-Catalyzed of Aryl Halides with Diverse Directing Groups

Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **2011**, *50*, 7312–7314. Zhang, C. P.; Vicic, D. A. Nickel, *J. Am. Chem. Soc.* **2012**, *134*, 183–185. Xu, J.-B.; Mu, X.; Chen, P.-H.; Ye, J.-X.; Liu, G.-S. *Org. Lett.* **2014**, *16*, 3942–3945.

Direct Trifluoromethylthiolation


II. Using electrophilic trifluoromethylthiolating reagents *more efficient and straightforward*

PhNHSCF₃/PhN(Me)SCF₃

toxic gas

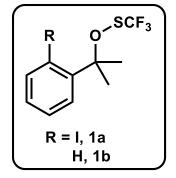
Effective of alkenes, alkynes, indoles, et. al, Need a strong Lewis acid or Brønsted acid.

Shelf-stable, highly reactive, Ease in preparation, broad scope, and mild reaction conditions.

Very attractive as general reagents that allow rapid installation of the trifluoromethylthiol group into small molecules.

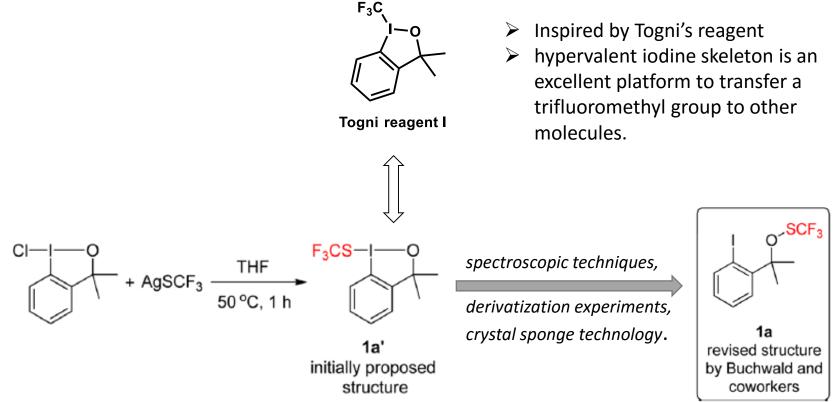
Ferry, A. L.; Billard, T.; Langlois, B. R.; Bacque, E. *J. Org. Chem.* **2008**, *73*, 9362–9365. Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. Angew. Chem., Int. Ed. **2009**, *48*, 8551–8555. Ferry, A.; Billard, T.; Bacque, E.; Langlois, B. R. J. Fluorine Chem. **2012**, *134*, 160–163.

Content


> Introduction

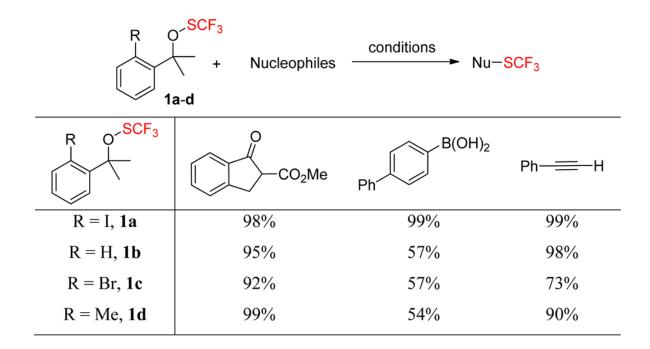
> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosaccharin: *Preparation and reactivity*



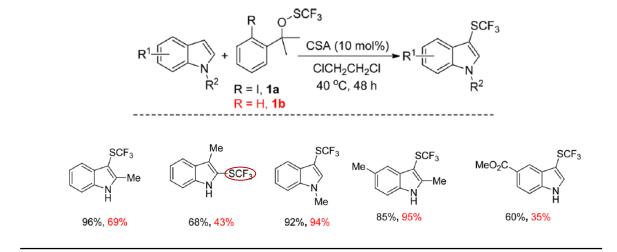
> Summary

2.1. Synthesis of Trifluoromethanesulfenate 1a and Structure Revision

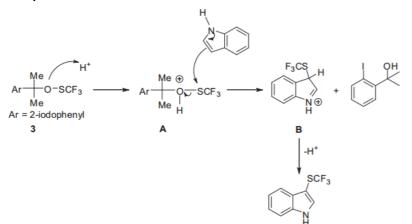


DSC and TGA analysis: colorless stable liquid; boiling point: 151–153 °C

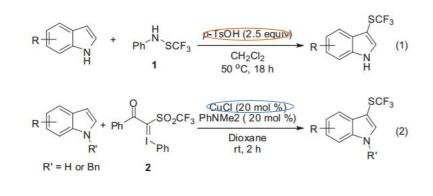
Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q. *Angew. Chem., Int. Ed.* **2013**, *52*, 3457–3460. Ma, B.-Q.; Shao, X.-X.; Shen, Q. *J. Fluorine Chem.* **2015**, *171*, 73–77. Vinogradova, E. V.; Müller, P.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **2014**, *53*, 3125. 3128. 2.2. Structure–Reactivity Relationship Study of Trifluoromethanesulfenate 1a and 1b



Reagent 1b is less effective but much cheaper compared with 1a.

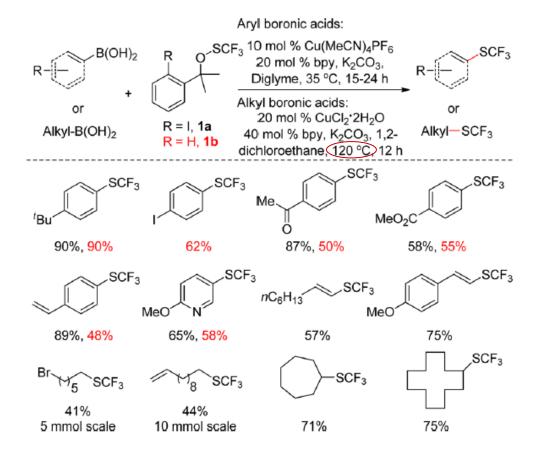

Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. J. Org. Chem. 2015, 80, 3012-3021.

2.3. Reactions of Reagents 1a and 1b with Indoles



Proposed mechanism

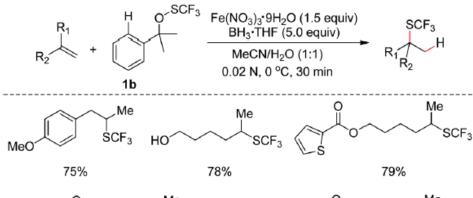
Other similar methods

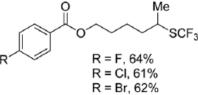


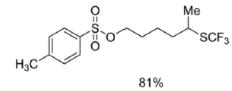
Ma, B.-Q.; Shao, X.-X.; Shen, Q. *J. Fluorine Chem.* **2015**, *171*, 73–77. Ferry, A.; Billard, T.; Bacque, E.; Langlois, B. R. *J. Fluorine Chem.* **2012**, *134*, 160–163. Yang, Y. D.; Shiro, M.; Shibata, N. *J. Am. Chem. Soc.* **2013**, *135*, 8782–8785.

12

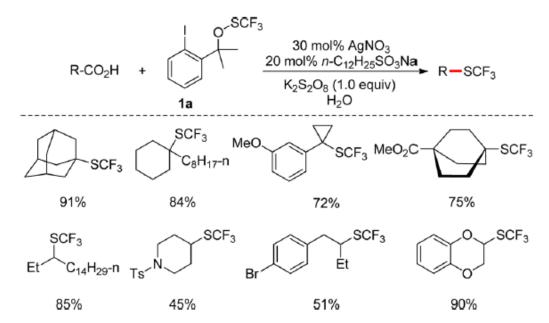
2.4. Reactions of Reagents 1a and 1b with Aryl-, Vinyl-, and Alkylboronic Acids



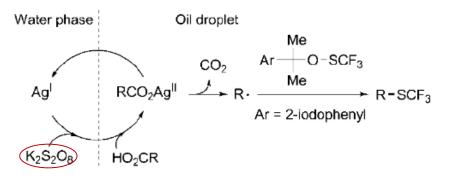



Shao, X.-X.; Wang, X.-Q.; Shen, Q. *Angew. Chem., Int. Ed.* **2013**, *52*, 3457–3460. Shao, X.-X.; Liu, T.-F.; Lu, L.; Shen, Q. *Org. Lett.* **2014**, *16*, 4738–4741.

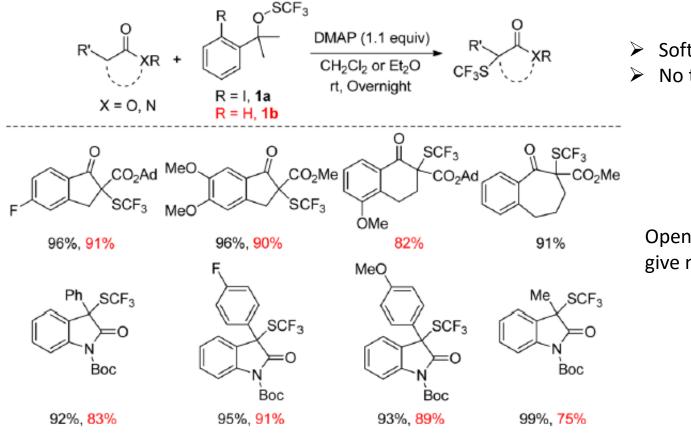
2.5. Iron-Catalyzed Hydrotrifluoromethylthiolation of Alkenes with Reagent 1b



A free radical process:

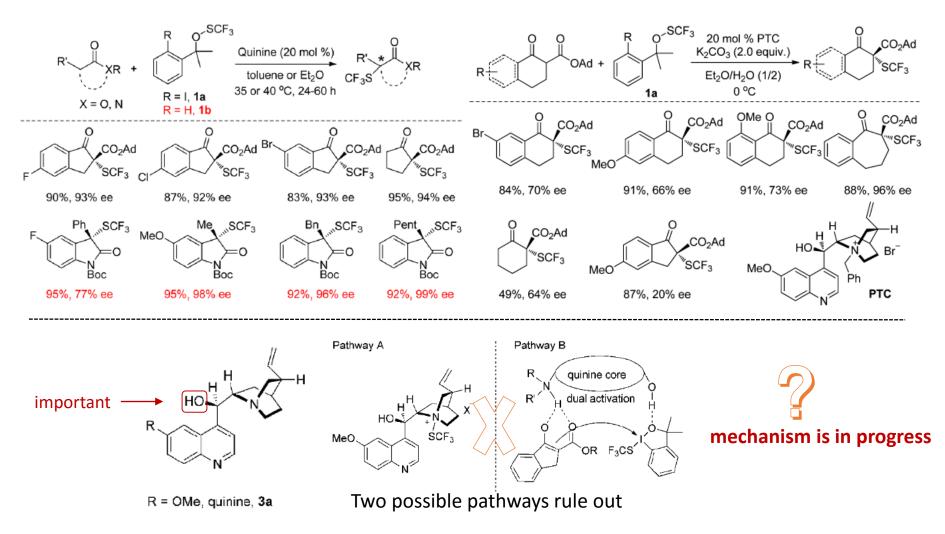

$$R \xrightarrow{Fe(III)/BH_3} \left[R \xrightarrow{I} \right] \xrightarrow{[SCF_3]} R \xrightarrow{SCF_3} H$$
 Markovnikov's rule

Barker, T. J.; Boger, D. L. *J. Am. Chem. Soc.* **2012**, *134*, 13588–13591. Yang, T.; Lu, L.; Shen, Q. *Chem. Commun.* **2015**, *51*, 5479–5481. 2.6. Silver-Catalyzed Decarboxylative Trifluoromethylthiolation of Alkyl Carboxylic Acids with Reagent 1a in Aqueous Emulsion


Proposed mechanism:

Hu, F.; Shao, X.-X.; Zhu, Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 6105–6109.

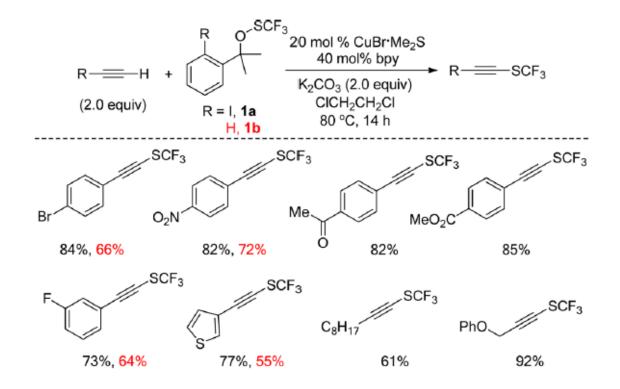
2.7. Reactions of Reagents 1a and 1b with $\beta\mbox{-Keto}$ Esters and Oxindoles


- Soft nucleophile
- No transition metal

Open-chain β-keto esters give no product

Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q. *Angew. Chem., Int. Ed.* **2013**, *52*, 3457–3460. Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. *J. Org. Chem.* **2015**, *80*, 3012–3021.

2.8. Asymmetric Trifluoromethylthiolations of β -Keto Esters and Oxindoles Using Reagents 1a and 1b

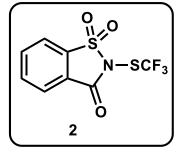


Wang, X.-Q.; Yang, T.; Cheng, X.-L.; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 12860-12864.

2.9. Reaction of Reagents 1a and 1b with Alkynes

Alazet, S.; Zimmer, L.; Billard, T. Angew. Chem., Int. Ed. 2013, 52, 10814-10817.

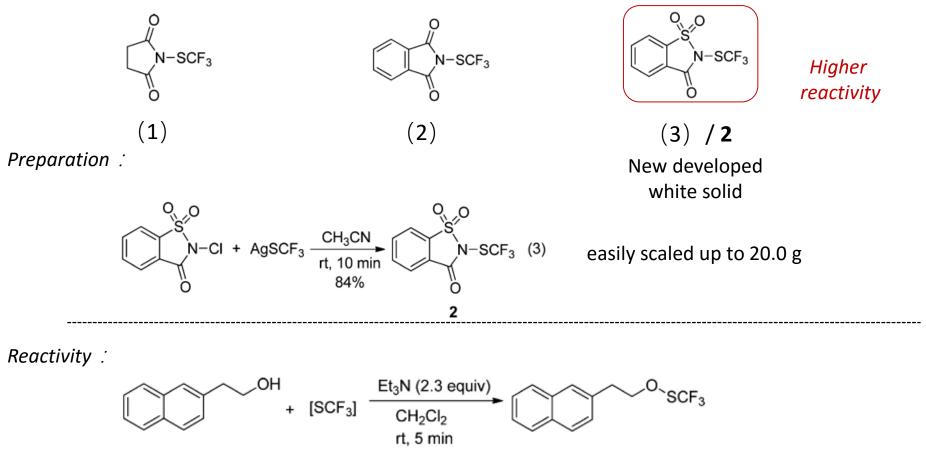
Content


> Introduction

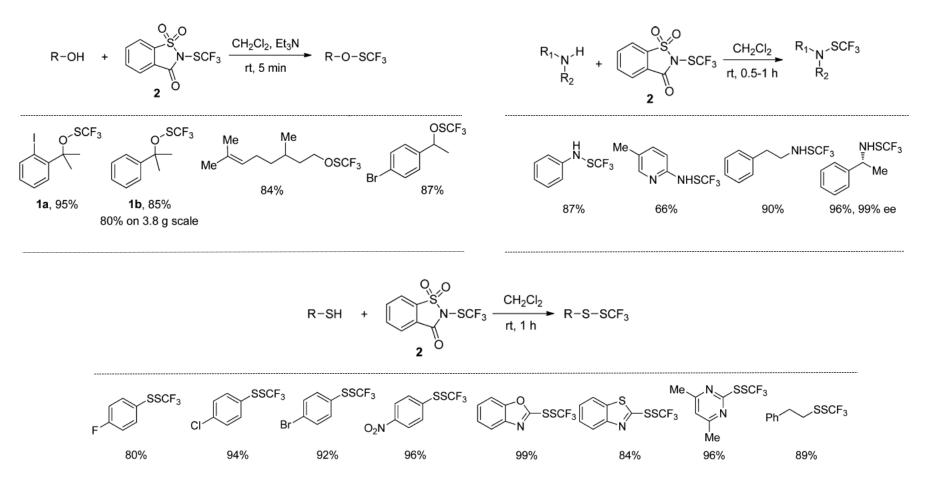
> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosaccharin: *Preparation and reactivity*

Compararison of the reactivities of Trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2


> Summary

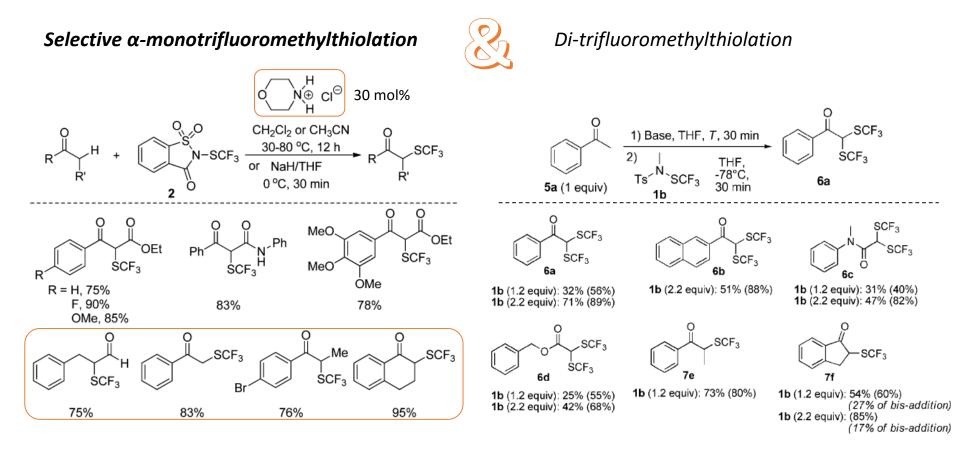
3.1. Three Trifluoromethylthiolated NBS Analogues



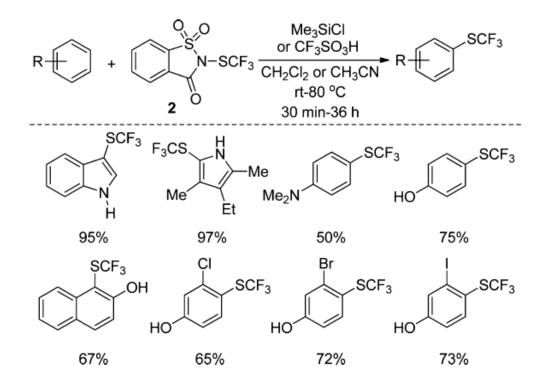
Yield : (1) 16%; (2) 12%; (3) 99%.

Kang, K.; Xu, C.-F.; Shen, Q. *Org. Chem. Front.* **2014**, *1*, 294-296. Xu, C.-F.; Ma, B.-Q.; Shen, Q. *Angew. Chem., Int. Ed.* **2014**, *53*, 9316-9320.

3.2. Reaction of Reagent 2 with Alcohols, Amines and Thiols



Xu, C.-F.; Ma, B.-Q.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 9316-9320.


3.3. Monotrifluoromethylthiolation of Carbonyl Nucleophiles Using Reagent 2

Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q. *Angew. Chem., Int. Ed.* **2013**, *52*, 3457-3460. Xu, C.-F.; Ma, B.-Q.; Shen, Q. *Angew. Chem., Int. Ed.* **2014**, *53*, 9316-9320. Alazet, S.; Zimmer, L.; Billard, T. *Chem. Eur. J.* **2014**, *20*, 8589-8593. 3.4. Electrophilic Aromatic Trifluoromethylthiolation of Electron-Rich Arenes Using Reagent 2

Xu, C.-F.; Ma, B.-Q.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 9316-9320.

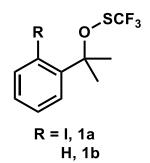
Content

> Introduction

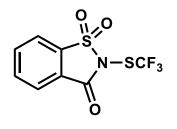
> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosacchrain: *Preparation and reactivity*

Compararison of the reactivities of Trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2


> Summary

4. Comparison of the reactivities of trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2



shelf-stable, highly reactive, ease in preparation, broad scope, and mild reaction conditions

Difference: *two different families; substrates scope complementary.*

More reliable in transition-metal-catalyzed reactions: copper-catalyzed: aryl/vinyl/alkylboronic acids; silver-catalyzed: aliphatic carboxylic acids.

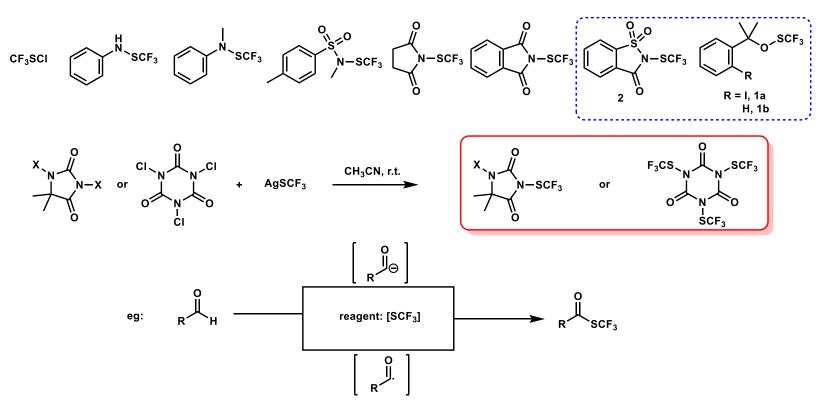
More electrophilic and more efficient for direct trifluoromethylthiolation of nucleophiles : amines, alcohols, thiols, and electron-rich arenes.

Content

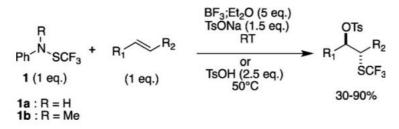
> Introduction

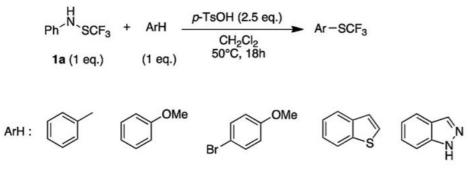
> Trifluoromethanesulfenates: *Preparation and reactivity*

> N-trifluoromethylthiosaccharin: *Preparation and reactivity*


Compararison of the reactivities of Trifluoromethanesulfenates 1a and 1b and N-trifluoromethylthiosaccharin 2

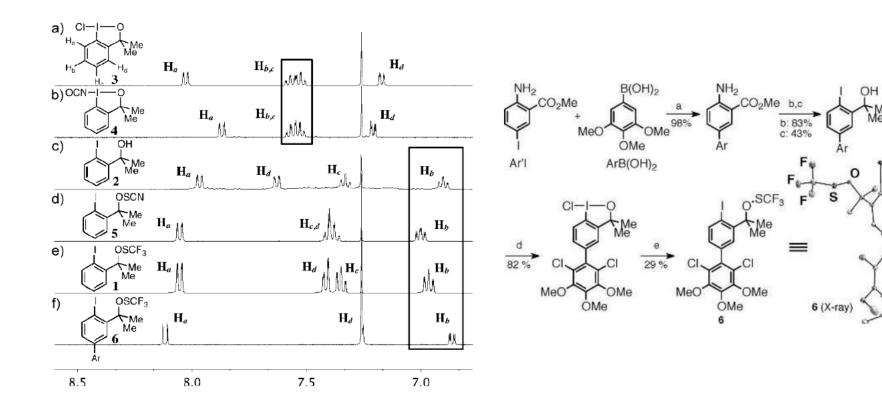
Summary

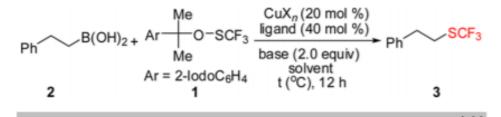

- Three shelf-stable, highly reactive trifluoromethylthiolation reagents have been developed
- Various other trifluoromethylthiolation reagents have also been introduced
- Designing two new reagents and proposing their preparation and application

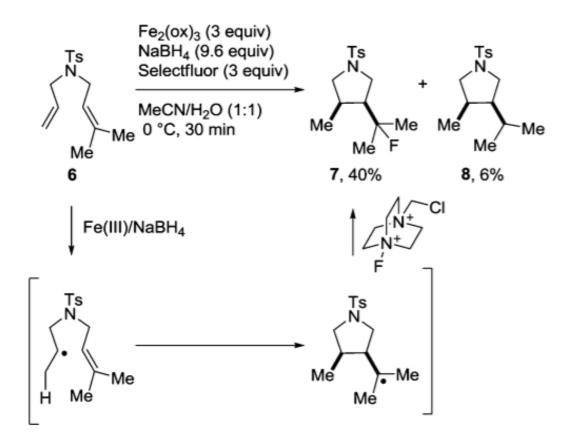


- Prof. Huang
- Dr. Chen
- All group members in E201

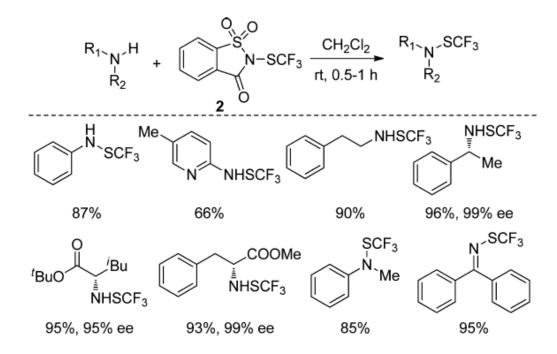
Thanks for your attention !

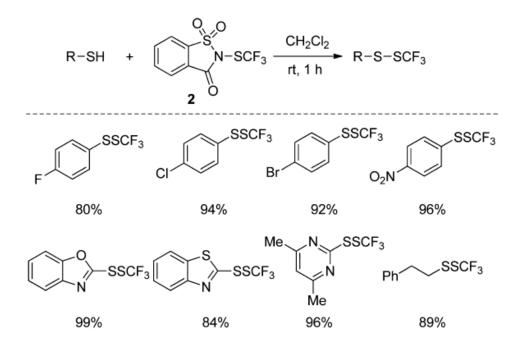

Scheme 1. Trifluoromethanesulfanylation of alkenes with trifluoromethanesulfanylamides.

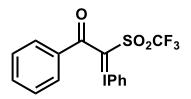


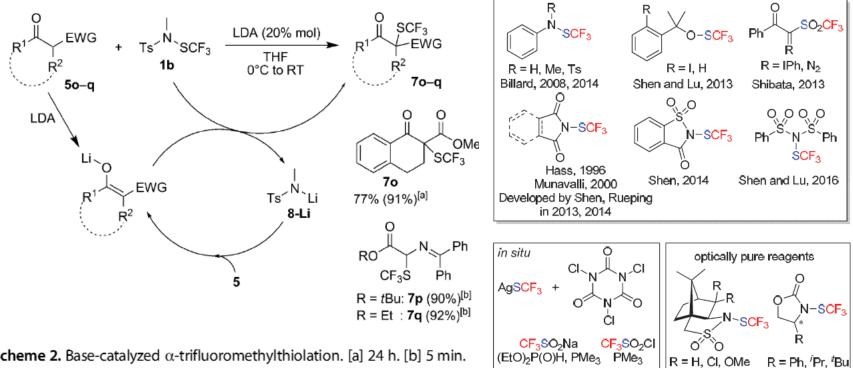

Scheme 2. Trifluoromethanesulfanylation of various aromatic compounds.

$$Ph^{-N}SCF_{3} + PhMgCl \xrightarrow{THF} Ph-SCF_{3}$$
1a 2a 3a




entry	CuX _n	ligand	base	solvent	temp (°C)	yield (%) ^b
1	Cu(MeCN) ₄ PF ₆	L1	K ₂ CO ₃	Diglyme	35	- C
2	Cu(MeCN) ₄ PF ₆	L1	K ₂ CO ₃	Diglyme	80	35 ^b
3	Cu(MeCN) ₄ PF ₆	L1	K ₂ CO ₃	DCE	80	60 ^c
4	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	80	58 <i>°</i>
5	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	90	73¢
6	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	100	73¢
7	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	120	80
8	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	120	71 d
9	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	DCE	120	60 e
10	CuCl ₂ •2H ₂ O	L2	K ₂ CO ₃	DCE	120	59
11	CuCl ₂ •2H ₂ O	L3	K ₂ CO ₃	DCE	120	66
12	CuCl ₂ •2H ₂ O	L4	K ₂ CO ₃	DCE	120	54
13	CuCl ₂ •2H ₂ O	L1	KOAc	DCE	120	39
14	CuCl ₂ •2H ₂ O	L1	K ₃ PO ₄	DCE	120	45
15	CuCl ₂ •2H ₂ O	L1	Na ₃ PO ₄	DCE	120	69
16	CuCl ₂ •2H ₂ O	L1	Na ₂ CO ₃	DCE	120	35
17	Cu(OAc) ₂	L1	K ₂ CO ₃	DCE	120	49
18	CuBr ₂	L1	K ₂ CO ₃	DCE	120	79
19	CuBr*SMe ₂	L1	K ₂ CO ₃	DCE	120	72
20	CuTc	L1	K ₂ CO ₃	DCE	120	74
21	CuCl ₂ 2H ₂ O	-	K ₂ CO ₃	DCE	120	30
22	-	L1	K ₂ CO ₃	DCE	120	-
23	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	Toluene	120	72
24	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	NMP	120	trace
25	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	Acetone	120	trace
26	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	CH ₃ CN	120	31
27	CuCl ₂ •2H ₂ O	L1	K ₂ CO ₃	THF	120	25




3.2. Reaction of Reagent 2 with Amines

3.3. Reaction of Reagent 2 with Thiols

Scheme 2. Base-catalyzed α -trifluoromethylthiolation. [a] 24 h. [b] 5 min. Yields shown are those of isolated products; values in parentheses are yie as determined by ¹⁹F NMR spectroscopy using PhOCF₃ as an internal standard. EWG = electron-withdrawing group.

图式 31 亲电三氟甲硫基试剂种类

Scheme 31 Different types of electrophilic trifluoromethylthiolation reagents