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1. Chemoselectivity and site selectivity: Concepts and examples.
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2. Undirected control of site selectivity: C-H Bromination

Radical-mediated aliphatic C–H brominations using N-bromoamides offer both high steric

and electronic selectivities, enabling C–H brominations inaccessible using standard protocols.
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2. Undirected control of site selectivity: C-H Oxidation

tertiary C-H versus secondary C-H:

electronic (favors electron-rich sites),

steric (favors unhindered sites), and

stereoelectronic factors (favors sites

where strain relief is possible)
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6-CF3: greatly diminished C-H oxidation reactivity
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2. Undirected control of site selectivity: Carbenoid Insertion

unactivated C–H bonds

at benzylic and allylic positions and α to oxygen
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2. Undirected control of site selectivity: Carbenoid Insertion

electronically favored highly substituted sites 

counterbalanced by the steric demands of 

the carbene complex.

on steric grounds the primary C–H bond 

would be preferred.

rhodium-bound donor/acceptor carbenes: 

reactivity: < acceptor-only substituted carbenes

enabling highly selective C−H functionalization 

by balance of steric and electronic effects.
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3. Directed control of site selectivity: Peptide Catalysis

The steric hindrance, hydrogen bonding, π-interactions, and other characters of the backbone can

be fine-tuned by replacing the amino-acid residues.
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3. Directed control of site selectivity: Peptide Catalysis

contrary site selectivity： conformational difference upon forming hydrogen bonds

in situ transformed

to a peracid
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3. Directed control of site selectivity: Ligand effect

a bulky and rigid P(t-Bu)3 (14) ligand favored the direct reductive elimination of intermediate 16

to give the α-arylated amine, a more flexible ligand, such as 15, promoted a β-hydrogen

elimination/Pd−hydride reinsertion sequence to eventually yield the β-arylation product.
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3. Directed control of site selectivity: Change of the Reaction Pathway

Direct β-arylation: palladium-catalyzed dehydrogenation and conjugate addition/reductive Heck

Buchwald-Hartwig-Miura α-arylation： oxidative addition, ligand exchange with the enolate,

reductive elimination

aryl halides: oxidant and aryl source
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3. Directed control of site selectivity: Change of the Reaction Pathway
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3. Directed control of site selectivity: Sugar Chemistry
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4. Conclusion and outlook

1. Compared with the advancement of selectivity control among different kinds of FGs as

well as the monument of controlling regio-, diastereo-, and enantioselectivity, the

development of site-selective approaches is still in its infant stage.

2. To breed more general, practical, and broadly applicable methods, it is envisaged that

future endeavors will focus on (1) expanding the substrate scope that can undergo site-

selective transformations and (2) precisely controlling the site of reaction in less biased

settings.

3. Clearly, the needs cannot be met without the availability of more powerful catalysts,

reagents, strategies, and even new tactics. It is expected that Mother Nature will continue

providing inspirations to design biomimetic or supramolecular catalysts.

4. To enable more precise site selectivity control and broader reaction scope would require

better modeling and deeper mechanistic understanding of these catalytic processes.
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4. Conclusion and outlook

5. In addition, cooperative catalysis through combining two or more activation modes

might be another trend for the incoming efforts. Vigorous development in recent years has

demonstrated that merger of multiple catalysis is able to activate substrates once

considered inert or functionalize sites previously inaccessible.

6. Furthermore, practical applications of site-selective transformations in complex

molecule synthesis are anticipated to be illustrated more frequently in the future.
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