The Evolution of Pd⁰/Pd^{II}-Catalyzed Aromatic Fluorination

Reporter: Song Feifei Supervisor: Prof. Yong Huang 2016.10.31

Buchwald, S. L. et al. Acc. Chem. Res. 2016, 49, 2146-2157.

Outline

Introduction

- Pd-catalyzed fluorination: discovery
- In situ catalyst modification
- Formation of regioisomeric aryl fluorides
- Pd-catalyzed fluorination: developments
- Conclusions and future perspectives
- Acknowledgment

Introduction

a) Proposed Pd⁰/Pd^{II} catalytic cycle for aryl fluorination.

b) Challenges associated with Pd-catalyzed cross-coupling.

Grushin, V. V. Acc. Chem. Res. **2010**, *43*, 160-171. Yandulov, D. V. *et al. J. Am. Chem. Soc.* **2007**, *129*, 1342-1358.

Introduction

Decomposition pathway observed in the thermal decomposition of $L_2Pd(Ar)F$ complexes.

Thermal decomposition of 1 in the presence of L1.

Grushin, V. V. et al. Organometallics 2007, 26, 4997-5002.

Outline

Introduction

Pd-catalyzed fluorination: discovery

- In situ catalyst modification
- Formation of regioisomeric aryl fluorides
- Pd-catalyzed fluorination: developments
- Conclusions and future perspectives
- Acknowledgment

Pd-catalyzed fluorination: discovery

(a) X-ray crystal structure of 2 and C-F reductive elimination from 2.(b) Catalytic fluorination using L2.

Buchwald, S. L. et al. J. Am. Chem. Soc. 2008, 130, 13552-13554.

Pd-catalyzed fluorination of aryl triflates^a

^aIsolated yields are shown. Values in parentheses indicate the amounts of reduction products (ArH) formed (n/o = not observed). ^bCyclohexane was used as the reaction solvents.

Synthesis of 6a and the dearomative rearrangement of 6a to 6b

Buchwald, S. L. et al. J. Am. Chem. Soc. 2012, 134, 19922-19934.

L2-supported oxidative addition complex 7a does not undergo rearrangement to 7b.

Dearomative rearrangement of 8a to 8b

Rearomatization of 6b followed by trapping with 4-(*n*-Bu)PhBr to complex 10. The X-ray crystal structure of 10 is also shown.

Synthesis and reactivity of LPd(Ar)F complex 11

Formation of regioisomeric aryl fluorides

Proposed mechanism for the formation of regioisometic aryl fluorides from para-substituted aryl triflates.

Formation of regioisomeric aryl fluorides

Addition of *t*-BuOD to the Pd-catalyzed fluorination of 12 gives a mixuture of aryl fluorides (12a-d).

Proposed mechanism

The formation of regioisomeric aryl fluorides a and b.

14

Formation of regioisomeric aryl fluorides

Effect of para substituents on regioisomer formation^a

^aYields were determined by ¹⁹F NMR spectroscopy.

Proposed mechanism

Regioisomer formation from meta-substituted aryl triflates.

Formation of regioisomeric aryl fluorides

Effect of meta substituents on regioisomer formation^a

^aYields were determined by ¹⁹F NMR spectroscopy.

Formation of regioisomeric aryl fluorides

Proposed mechanism for regioisomer formation from orthosubstituted aryl triflates.

Improved catalyst system

Effect of ortho substituents on regioisomer formation

Outline

- Introduction
- Pd-catalyzed fluorination: discovery
- In situ catalyst modification
- Formation of regioisomeric aryl fluorides
- Pd-catalyzed fluorination: developments
- Conclusions and future perspectives
- Acknowledgment

Improved catalyst system

Structure of L4-based precatalyst P1.

Synthesis of L4-supported Pd(0) precatalyst P2.

Buchwald, S. L. et al. Org. Lett. 2013, 15, 2876-2879.

Improved catalyst system

Fluorination of (hetero) aryl triflates and aryl triflates derived from biologically active phenols

^{*a*}Isolated yields are shown. ^{*b*}Yield when the reaction was conducted under the same conditions using $(cinnamyl)PdCl_2D4$ (Pd/L4 = 1:1.5) instead of P2. The corresponding ArCl was detected by GC analysis. ^{*c*}Cyclohexane was used as the reaction solvent.

Buchwald, S. L. et al. Inorg. Chim. Acta. 2014, 422, 188-192.

Fluorination of (hetero)aryl bromides

Pd-catalyzed fluorination of aryl halides using P2^a

Buchwald, S. L. et al. J. Am. Chem. Soc. 2014, 136, 3792-3795.

Fluorination of (hetero)aryl bromides

Structure of HGPhos (L5) and the synthesis of P3.

Fluorination of (hetero)aryl bromides

Pd-catalyzed fluorination of heterocyclic aryl bromides using P3^a

^aYields determined by ¹⁹F NMR spectroscopy.

Glove-Box-Free Fluorination

Wax capsules for the Pd-catalyzed fluorination of aryl triflates

Wax capsules for the Pd-catalyzed fluorination of aryl bromides

Buchwald, S. L. et al. Nature 2015, 524, 208-211.

Glove-Box-Free Fluorination

Glove-box-free fluorination of aryl triflates

Isolated yields are reported.

Values in parentheses are isolated yields obtained a glovebox to set up the reaction.

Glove-Box-Free Fluorination

Glove-box-free fluorination of aryl bromides

Isolated yields are reported.

Values in parentheses are isolated yields obtained a glovebox to set up the reaction.

Regioselective and room-temperature fluorination

Structure of Alphos (L6) and the synthesis of [(L6Pd)-COD] (P4).

Room-temperature fluorination of aryl triflate^a

^aIsolated yields are shown. ^bYields determined by ¹⁹F NMR spectroscopy.

Fluorination of five-membered heterocycles

Pd-catalyzed fluorination of 2-substituted 3-bromothiophenes^a.

^{*a*}Yields determined by ¹⁹F NMR spectroscopy are shown. Values in parentheses indicate % conversion of the starting material. ^{*b*}Isolated yield. ^{*c*}Toluene was used as the reaction solvent. 31 Buchwald, S. L. *et al.* Organometallics. **2015**, 34, 4775-4780.

Outline

- Introduction
- Pd-catalyzed fluorination: discovery
- In situ catalyst modification
- Formation of regioisomeric aryl fluorides
- Pd-catalyzed fluorination: developments
- Conclusions and future perspectives
- Acknowledgment

Conclusions and future perspectives

- Pd-catalyzed aromatic fluorination.
- Designed and developed a new biaryl monophosphine ligands to facilitating C-F reductive elimination.
- Realized glove-box-free or room temperature fluorination

 (Hetero)Aryl chlorides, and five-membered heteroaryl (pseudo)halides are not viable substrates

Thanks for your attention!